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a b s t r a c t

Near Infrared Spectroscopy (NIRS) analysis at the single seed level is a useful tool for breeders, farmers,
feeding facilities, and food companies according to current researches. As a non-destructive technique,
NIRS allows for the selection and classification of seeds according to specific traits and attributes without
alteration of their properties. Critical aspects in using NIRS for single seed analysis such as reference
method, sample morphology, and spectrometer suitability are discussed in this review. A summary of
current applications of NIRS technologies at single seed level is also presented.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Plant breeding facilities are constantly looking to improve
current varieties and to obtain new seeds with special traits. This
is achieved with a careful selection of the best individual traits.
Use of bulk samples in the selection process results in a larger seed
production with only a fraction with the desired trait, since the
heritability of a desired characteristic may be low. Analyzing
individual seeds allows researchers to understand the future plant
characteristics and the characteristics of its next generation [1],

while retaining competitive agronomic performance, or obtaining
high yields or resistance characteristics. Common Near Infrared
Spectroscopy (NIRS) bulk sample analyzers provide measurements
of samples of about 250 g of kernels on average. Single seed
differences cannot be identified and no discrimination is possible.

Besides seed producers, farmers, feed processors, animal pro-
ducers, food companies, and other seed-related industries can
benefit from on-site single seed screening as well. The so-called
‘dilution effect’ of current analytical technologies allows low
fractions of unwanted seeds to be mixed with the majority with-
out the chance of identifying the impurity fraction, decreasing the
overall batch value. For this reason seed inspection is very relevant
for pricing commercial grains, as the undesired fraction of seeds is
visually determined at single seed level. For processing and quality
improvement purposes, NIRS analysis at the single seed level

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/talanta

Talanta

0039-9140/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.talanta.2013.12.038

n Correspondence to: Food Science Building, Iowa State University, Ames,
IA 50014, USA. Tel.: þ1 515 294 8319.

E-mail address: esteve.lidia@gmail.com (L. Esteve Agelet).

Talanta 121 (2014) 288–299

www.sciencedirect.com/science/journal/00399140
www.elsevier.com/locate/talanta
http://dx.doi.org/10.1016/j.talanta.2013.12.038
http://dx.doi.org/10.1016/j.talanta.2013.12.038
http://dx.doi.org/10.1016/j.talanta.2013.12.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.talanta.2013.12.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.talanta.2013.12.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.talanta.2013.12.038&domain=pdf
mailto:esteve.lidia@gmail.com
http://dx.doi.org/10.1016/j.talanta.2013.12.038


followed by a sorting mechanism could help in increasing sample
uniformity and purity. Whether the target is to segregate sound
seeds from defective/damaged, to keep seeds with a specific
concentration of a compound of interest, or to discriminate
mixtures of varieties, the quality and economic value of a seed
batch could increase considerably when the unwanted fraction of
seeds is removed and the batch is uniform in its attributes [2].

This review gathers relevant aspects of seed and grain analysis
by NIRS as a tool to quantify, segregate, and discriminate seeds on
a fast and non-destructive manner. Current and promising appli-
cations are exposed together with limitations and challenges faced
by the technology. Although NIRS is already well-known for
successfully analyzing bulk grain and bean samples, Single Kernel
NIRS (SKNIRS) still has to reach its full potential for industrial
applications. SKNIRS needs to have recognized protocols and
methods as bulk NIR analyses currently have.

2. Overview on near infrared spectroscopy

It has been over 60 years since the first practical application of
NIRS as an analytical method. Karl Norris, pioneer of NIRS,
developed the first applications of NIRS on grains and seeds in
the 1960s [3,4]. Since then, instrumentation, statistical methods,
and software have been improving and the number of applications
have exponentially grown. NIRS is now a mature analytical
method for grains and seeds, recognized by the American Associa-
tion of Cereal Chemists (AACC 39-00) and the American Oil
Chemist Association (AOCS am 1–9).

Near Infrared spectroscopy (NIRS) technologies have a perfor-
mance comparable to other wet chemistry analytical methods, but
with some important advantages such as short analysis time, small
sample preparation, and non-destructiveness. The radiation from
the near infrared (NIR) electromagnetic region (700–2500 nm) is
absorbed by water and organic compounds such as carbohydrates,
protein, oil or alcohols. The apparent absorbed energy by a sample,
calculated from either transmitted or diffusively reflected radia-
tion, can be related to the content of the compound. Shorter
wavelengths, close to the visible region, are weakly absorbed
compared to the longer wavelengths closer to the infrared region.
For this reason, shorter wavelengths can penetrate deeper through
samples that are not excessively thick and opaque. Fraser et al. [5]
showed that, for apples, wavelengths up to 900 nm could pene-
trate up to 25 mm, while from 1400 to 1600 nm the penetration
decreased to 1 mm.

Bulk sample NIR instruments working by transmittance mode
mainly work on the region from 700 to 1100 nm. Those instru-
ments measure the transmitted radiation through a fixed path-
length of a bulk sample of grains or beans, assuming that the
decrease of the initial radiation in traveling through the sample is
due to absorption. The pathlength is optimized according to the
commodity being measured and the instrument setup, being
common a pathlength around 15 mm for corn and soybeans.
Instruments based on reflectance mode, on the other hand,
measure the diffusely reflected radiation from the sample. The
diffuse reflected signal is a fraction of the initial radiation source
which after penetrating the sample few mm, has been interacting
with the sample molecules, scattered in several directions, and
traveled back to the surface. Only the diffuse fraction of the
reflected radiation has interacted with the compound of interest.
Other reflected fractions (such as specular) may only have inter-
acted with the sample surface and thus does not contain chemical
information related to the sample composition.

In order to correlate the sample absorbance to the concentra-
tion of a specific compound, the accurate amount of the compound
under analysis must be known. For this reason NIR technologies

are initially dependent on other chemical methods (also known as
reference methods) to develop a calibration model and validate it
properly. After some time, the calibration may need future updates
because new sources of variability are most likely to appear when
dealing with grains and seeds (variability due to fields, varieties,
environmental changes etc.). More samples will have to be added
in the model and more reference analyses will be needed. There-
fore the selection of an appropriate primary chemical reference
method and laboratory a crucial step when developing any NIRS
application. Precision and accuracy of NIRS calibrations will be
determined by the quality of the reference laboratory data.
Combining reference data from different laboratories, even if the
method is the same, is highly discouraged because errors from
different laboratories differ.

There are many calibration algorithms, but most share the
same principles as those that are widely known to performwell on
quantitative analysis: multiple linear regression (MLR), principal
component regression (PCR), and partial least squares (PLS) [6].
PLS and PCR often lead to very similar results, and MLR performs
better when working with a short range of uncorrelated wave-
lengths or data points. PLS and PCR can be easily adapted for
discrimination (i.e. PLS-DA) and are in fact derived from principal
component analysis, a popular algorithm in pattern recognition
and discrimination.

Once a calibration model is developed, it must be properly
validated. True validation is done predicting independent samples,
not related with samples included in the calibration set. Bagging
and cross-validation are other validation alternatives when sample
availability is a limitation. However, validation statistics from
cross-validation may be overoptimistic, especially for models dev-
eloped with few samples or not including all possible sources of
variability. The use of suitable validation statistics is extremely
important in order to report the calibration performance and
determine its future use (screening, quality control etc.). The most
widely utilized statistics for quantitative models are well summar-
ized by William [7] and Fearn [8], and include among others those
to quantify expected random errors (i.e. standard error of predic-
tion (SEP) or cross validation (SECV)) and systematic error (bias).
Other statistics such as the coefficient of correlation (R) – or its
squared, the determination coefficient (R2) and the ratio of the
standard deviation of references over the SEP (RPD) give an idea of
the overall calibration performance.

3. Impact of seed size and morphology

Single seeds are variable in shape and size. The variability of
seed thickness translates in variability of the distance from the
sample to the collecting sensor (focal length) and hence the
sample distance (pathlength) that radiation travels in transmit-
tance mode. Eq. (1) shows the relationship of the radiation
reaching the sensor (F) with the focal length (f) and the irradiated
sample diameter (D) [9]. According to that equation, large kernels
reflect more radiation than small kernels as the focal length is
larger. Once the reflectance is transformed to apparent absor-
bance, larger kernels will have lower optical density or absorbance
offset compared to small kernels.

F ¼ f =D ð1Þ
Because individual seeds can be small (i.e. 3 mm length for

wheat kernels), the irradiated diameter (D) of commercial instru-
ments working in reflectance mode is often larger than the seed
diameter. In that case, the collected radiation includes scattering
from kernel edges in detriment of relevant biochemical signal. For
transmittance measurements, the irradiated diameter should not
exceed the seed diameter because any radiation leakage through
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the edges may lead to detector saturation. For this reason,
measurements by transmittance are more complicated for small
seeds. The transmittance measurement of big seeds, on the other
hand, may lead to seed edges badly illuminated and cause non-
uniform illumination of the sample [10,11].

Seed curvature and shape are among the main sources of
spectral variance within seeds of a same variety. Malena et al.
[12] found that the principal source of variance contained the
information related to the kernel curvature. There are spectral
differences between sides (crease and back) in heterogeneous
kernels such as wheat or corn as well. In reflectance mode, there
will be more light scattering when the crease side face the
illumination source. For measurements taken in transmittance
mode, the radiation also experiences different scattering and
travel path patterns depending on which side the kernel is placed
for analysis. Orman et al. [13] showed that corn kernels with the
embryo facing the light source (collecting the radiation from the
back of the kernel) gave lower errors when quantifying oil
compared with calibrations developed with the embryo facing
the detector (SECV¼1.2% vs. 1.5%). Cogdill et al. [14], however,
showed the opposite when predicting oil content in corn kernels
with chemical imaging by transmittance.

Even when analyzed from the same side, the small changes on
orientation and positioning of the seed respect to the measure-
ment fiber impact the final spectra and calibration performance:
there are appreciable changes in spectra offset and shape.
Delwiche [10] found that the repeatability of protein predictions
by transmittance was worse for smaller wheat kernels, mostly due
to the difficulty of keeping the same alignment in the sampling
clamp – more degrees of freedom when being replaced –. Dowell
et al. [15] and Weinstock et al. [16] also reported the impact of
seed positioning and replacement on corn kernel reflectance
spectra when predicting oil.

Some mathematical transformations of the spectral signal have
been useful to reduce the impact of kernel morphological char-
acteristics, positioning, and orientation. Preprocessing methods
that reduce light scattering effects such as multiplicative scatter
correction (MSC) or standard normal variate (SNV) have been
utilized either alone [17–20] or combined with methods that
reduce peak overlap while smoothing the signal, such as deriva-
tives [10,18,19]. The optimal preprocessing depends not only on
the instrument configuration, but also the seed characteristics and
compound to be measured. Measuring properties related to seed
size or morphological-rheological characteristics involves measur-
ing the indirect scattering behavior (i.e. differences in offset). In
that case, developing models with absorbance is better than
preprocessing the spectra with other mathematical treatments.
This is the case of measuring hardness, vitreousness, and density
in wheat kernels [18].

4. Reference methods and detection limit

NIRS is not an analytical method for direct measurement of
trace elements – compounds found at part per million (mg/kg) or
part per billion in the seed. Given the small size of seeds, the
detection limit is a limitation of NIRS on single seed analysis.
Dowell and Maghirang [21] suggested that compounds that
represent in weight less than 0.1% of the seed cannot be accurately
measured. For instance, Patrick and Jolliff [22] observed that
predicting meadow foam seeds with oil content below 5 mg were
consistently overpredicted so the detection limit was reached. But
on the other hand, Janni et al. [23] obtained large errors when
predicting oil in corn kernels when including kernels with oil
content above 8% on dry mass. Seeds with abnormally high
concentrations of any compound (specific hybrids or genetically

modified seeds) are a problem for conventional NIR calibrations as
those new seeds may present additional genetical or morphologi-
cal changes that make them different from the rest and add an
additional source of variability to be modeled and which may not
always be properly done by linear methods like PLS.

The low detection limit of NIR may be even higher than 0.1%
depending on the initial size of the seeds and the characteristics of the
compound to be measured. The impact of kernel size on calibration
accuracy was described by Tajuddin et al. [24] when developing PLS oil
calibrations for large (46mm) and small (o6mm) soybean seeds.
Larger seeds lead to better calibrations than smaller seeds (SEP¼0.09%
and 0.14%, respectively). On the other hand, attributes such as
moisture often lead to much better accuracies than compounds such
as protein or oil (Table 1), due to the strong absorption of water in the
NIR region. This also means that the detection limit for moisture is
going to be lower compared to other compounds.

There are feasibility studies in discriminating kernels with myco-
toxin contamination which have been controversial as mycotoxins are
found in trace concentrations. Dowell et al. [15] showed good
accuracies segregating corn kernels above 100 ppm of total fumonisin
and below 10 ppm, and Pearson et al. [25] had also success with corn
kernels with aflatoxin above 100 ppb and below 10 ppb. Nevertheless,
the measurement of those compounds in such low concentration may
be due to the indirect measurement of characteristics which are
correlated to the concentration or presence of compound of interest. It
was suggested that some changes in the endosperm may be what
drove the classification of aflatoxin contaminated corn kernels [25].
The measurement of wheat vitreousness is another example of
indirect measurement of other compounds. Dowell [26] concluded
that protein or starch concentrations together with light scattering
effects could be what NIRS was measuring when analyzing kernel
hardness. The agreement of his NIRS predictions with graders were
very high (99%) for easily classifiable kernels. For vitreousness, similar
to what was observed with hardness, Wang et al. [27] and Manley
et al. [12] concluded that light scattering, kernel color, hardness, starch
content, water binding and protein concentration were relevant
components for classification of vitreousness of wheat and corn
kernels with NIRS.

Secondary (pleitrofic) effects allowed the segregation of roundup
ready (RR) soybeans from conventional with NIRS [28–30]. Therefore,
NIRS does not detect the RR gene or modified DNA, but the effect that
the gene causes on the fiber of soybean seed hulls [30]. Some papers
have reported the determination of minor compounds such as fatty
acids [16,31–41] or amino acids [20,42], although the correlation to
total oil or protein content, respectively, should be determined in order
to find out if what is being indirectly measured is the majoritary
compound. This concept is explained by Kovalenko et al. [43] for NIR
measurement of amino acids in bulk soybean samples.

The size of single kernels is also a limitation from the reference
laboratory point of view. Choosing reference methods and labora-
tories that can provide accurate results is crucial because the error
of the reference method will be added to the NIR predictions. For
instance, Cogdill et al. [14] found that the reference chemistry
method for oil in corn kernels accounted for 50% of the prediction
error of their chemical imaging calibrations.

However, when working with single seeds determining and
accounting for the laboratory error is not an easy task as most of
current reference methods of seed analysis are designed and
optimized for bulk analysis. Even if a single seed is enough sample
for certain chemical analysis, the error coming from the laboratory
will be proportionally larger relative to the mass of a single kernel
compared to bulk analysis. For destructive reference methods (wet
chemistry), the kernel is destroyed and given the small sample
size most likely there is no chance to determine the standard error
of the laboratory or measurement repeatability. In consequence, it
is not possible to average measurements to reduce the random
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Table 1
Major commodities and compounds quantitatively analyzed by NIRS at single seed level.

Seed Attribute SEP R2 (%) Best use Technologya Citation

Wheat Moisture 0.3–1.0% 81–98 Quality control DAR [53,63]
Protein 0.4–1.37% 84–99 Quality control MR, PGT, DAR, CIR [10,17,18,49,63–68]
Hardness 7.6–15 h.u. 71–91 Usable MT, DAR [50,66,69]
Oil 0.1% 69 Rough screening CIR [68]
Mass 2.4–2.9 mg 37–79 Screening DAR [53]
DON and Vomitoxin 40–60.8 ppm 64–87 Screening DAR [55]
Ergosterol 100 ppm 64 Rough screening DAR [55]
Amylose 0.4–0.9% 90 Usable DAR [70]

Corn Oil (%), Oil (mg) 0.6–1.4%, 2.7 mg 55–95, 85 Usable, Screening DAR, CIT, MT, CIR [13,14,16,19,20,23,71]
Fatty acids: (1) 2.2%b/3.9 mg

(2) 4.2%b/9.6 mg
(3) 4.2%b/13.3 mg

(1) 38/77
(2) 39/89
(3) 42/74

(1) Rough Screening
(2) Screening
(3) Rough screening

DAR, CIR [16,41]
(1) Palmitic
(2) Oleic
(3) Linoleic

Protein (%) 0.3–1.7% 75–95 Usable DAR [19,20,41,71]
Protein (mg) 2.3–3.8 mg 77–89 Screening
Moisture 0.76–1.2% 87–95 Quality control DAR, CIT, PGT [14,48,59]
Starch (%) 0.7%–11.5% 17.8– 66–88 Screening DAR [19,41,71]
Starch (mg) 18.2 mg 85 Screening
Mass 27.6–30.0 mg 87 Screening DAR [19,20,41]
Energy 183 cal/g–93.9 cal n.a. Rough screening DAR [41]
Fungal infection 6.3–9.6% 80 Usable GMR [72]
Ergosterol 1.74 mg/kg 81 Quality control GMR [72]
Fumonisin 1.33 78 Usable GMR [72]

Soybeans Protein 0.3–1.57% 87–98 Quality control DAR, GMR, GMT, FTR, FTT [24,44,46,59]
Moisture 0.32–0.88% 98–99 Quality control DAR, FTR, DBT [45,46,59,64,]
Oil 0.2–1.44% 96–98 Quality control DAR, FTR, FTT, GMR [24,44,46]
Mass 10–16 mg 77.5–91 Quality control DAR, GMR, FTT [44]
Isoflavones 0.017% 99.7 Quality control FTR [73]

Soybean pods Sucrose 0.37% 75 Screening GMT [42]
Free aminoacids 0.21% 69 Screening GMT [42]

Rapeseeds Protein 0.74–0.77% 94–96 Quality control MGR [38,74]
Oil 1.14% 74–97 Quality control MGR [33,38]
Mass 0.51 mg 85 Usable MGR [33]
Fatty acids: (1) 2.7–8.9%b

(2) 1.53–4.2%b

(3)1.13%b

(4) 0.42%b

(5) 3.87%b

(6) 3.24–6.4%b

(1) 85–97
(2) 53–85
(3) 76–85
(4) 72
(5) 14
(6) 88–93

(1) Quality control
(2) Screening
(3) Screening
(4) Screening
(5) Rough screening
(6) Quality control

MGR, DAR [32,33,37,40]
(1) Oleic
(2) Linoleic
(3) Linolenic
(4) Palmitic
(5) Stearic
(6) Eucosenoic
(7) Erucic

Glucosinates 10.3 mmol/g 86 Screening GMR [38]
Indole 1.4 mmol/g 86 Screening GMR [38]

Sunflower seeds Fatty acids: (1) 27.7 g/kg
(2) 46.0 g/kg
(3) 84.3 g/kg
(4) 62.1 g/kg

(1) 52
(2) 80
(3) 89
(4) 91

(1) Rough screening
(2) Screening
(3) Screening
(4) Usable

GMR [31,34,35]
(1) Palmitic
(2) Stearic
(3) Oleic
(4) Linoleic

Rice Mass 1.09–1.30 mg 67–71 Screening GMR [75]
Moisture 0.24–0.29% 98 Quality control MGR [76]
Protein 0.39–0.52% 93–94 Usable MGR [76,77,78]
Amylose 2.3–3.6% 67–85 Screening MGR,MGT [75,79]

Meadow-foam seed Oil 3.0% 95 Usable MGT [22]

Common beans Protein 1.6% 82 Quality control DAR [80]
Starch 4.9% 56 Rough screening DAR [80]
Mass 41.2 mg 74 Screening DAR [80]

Barley Protein 0.8% 84 Usable GMR [81]

Sesame Moisture 0.4% 87 Usable GMR [36]
Protein 1.0% 78 Screening GMR [36]
Oil 1.5% 82 Screening GMR [36]
Fatty acids: (1) 0.8%b

(2) 0.4%b

(3) 1.3%b

(4) 1.5%b

(1) 0
(2) 52
(3) 52
(4) 63

(1) Unusable
(2) Rough screening
(3) Rough screening
(4) Rough screening

GMR [36]
(1) Palmitic
(2) Stearic
(3) Oleic
(4) Linoleic
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error of the laboratory. Non-destructive reference methods such as
Nuclear Magnetic Resonance (NMR) for oil quantification (i.e.
AOCS method Ak 4–95 (09) and ISO 10565:1998) outperform
other destructive methods such as supercritical fluid extraction
(SFE) for oil quantification [14]. For protein, Kjeldahl digestion and
Biuret colorimetry are known methods for bulk samples but single
kernels are too small to be analyzed. By combustion ( i.e. AOCS
method Ba 4e-93 (09)), single kernels can be combusted to obtain
%N which is correlated to protein content. The analysis can be fast
because without previous grinding of the seeds calibrations are
still good [44]. NMR can also be used for protein and moisture
determination in seeds, although it has not been as popular when
developing NIR calibrations for single seeds as combustion and
oven drying, respectively. Moisture determination methods by
difference of the sample mass before and after oven drying (i.e.
method ASAE S352.2 for soybean) are optimized for bulk samples,
although they may also been used in single seeds [45]. One may,
however, take in account that those methods may show incon-
sistencies due to the different forms in which water can be found
in seeds and which oven drying can not quantify [46,47]. Karl
Fischer titration, another common method to analyze moisture,
has been never applied to single seeds – most likely because its
use in bulk seed samples was reported being not excessively
successful [46].

Visual reference methods involving manual inspection by trained
personnel are popular for grain inspection and can be reference
methods for qualitative or discriminative applications. Because of the
subjectivity between operators and variability within readings of a
same operator these reference data should be taken with caution
when developing NIR applications. Most of the calibration algorithms
are not robust to outliers and if not properly identified can lead to a
calibration with low performance. On the other hand, the criteria
taken by human operators may not be comparable with the informa-
tion that can be obtained from the NIR spectra. Wheat vitreousness,
for instance, is determined by a Board of Appeals and Review in US.
When Dowell [26] developed calibrations for vitreousness he found
that inspectors only agreed with NIR only 75% of the times when
kernels were difficult to classify.

The development of single seed calibrations with bulk reference
data or averaging single kernel spectra to simulate bulk data are
alternatives that has been tested by several authors. Finney and Norris
[48] averaged single kernel spectra to predict the composition of bulk
samples. Developing wheat protein calibrations with bulk reference
data and the average of the spectra from several kernels (from 10 to
100) gave calibrations that could be used for screening single seeds,
with SECVs from 0.35 to 0.16 % [49]. Thirty to fifty kernels represented
well the entire sample for hardness and protein in wheat, and as more
kernels were scanned and averaged, the calibration approached the
performance of calibrations for bulk samples [18,50]. Working by
averaging the spectra of 30 corn kernels per sample and using bulk
reference data allowed Tallada et al. [20] to develop screening
calibrations to measure crude protein, and potentially predict

tryptophan, lysine and oil. Armstrong et al. [51] and Armstrong and
Tallada [52] developed calibrations averaging single corn and soybean
seeds (30 and 50, respectively) and used bulk reference data, either
from wet chemistry or predictions from bulk NIR instruments. They
could use those calibrations to predict single corn kernel protein and
density at rough screening level (RPDs around 2), although bias
correction was necessary.

The units of the reference data are relevant and influence calibra-
tion performance. Any mathematical transformation of the reference
data may benefit or negatively impact its correlation with the
absorbance spectra. The composition of bulk samples is often
expressed as mass percentage of any compound over the total sample
mass (relative units). In the United States, the total mass can be
expressed as dry mass, current mass or as is moisture, or as mass with
standard moisture basis (i.e. 13% moisture content for soybeans and
15% for corn). Dry and standard moisture basis are the ones utilized
the most, as make two samples with different moisture content more
comparable. While predicting the relative content (weight %) of
compounds in bulk samples give accurate results and it is widely
used by all the bulk instrument calibrations, some researchers pointed
out that in single kernel the most accurate results are achieved by
working by absolute units (i.e. in mg) [53]. Peiris et al. [53] found that
smaller wheat kernels had a higher protein content in % basis
compared to large kernel, but Bramble et al. [54] observed a positive
correlation between kernel mass and protein content. Hence, the
correlation of absolute content of the compound and its % is variable.
Using % units may, for this reason, leave to calibrations with higher
prediction error, lower spectral variance expressed by the model, and
subtle non-linearities. Delwiche [10] and Bramble et al. [54] applied
mass corrections when developing protein calibrations for wheat
kernels, obtaining better calibration performances. For Baye et al.
[41] absolute units gave acceptable models for corn kernel constitu-
ents such as protein or starch. Relative unit models (%) only accounted
for 50% of the data variability, while absolute unit models accounted
for 85% of the data variability. Tallada et al. [20] also found better
predictions constituents measured in corn kernels (protein, oil, and
soluble sugar) when absolute values were used and no preprocessing
applied, averaging the spectra of 30 kernels and using bulk reference
values. Calibrations developed with absolute units may benefit of less
spectral preprocessing or even not preprocessing at all compared with
measurements with relative units (%) [19,20]. However, there are other
researchers who found that concentrations or relative units worked
best for their applications or obtained mixed results. Spielbauer [19]
utilizing the same instrument as Tallada et al. [20] got better results
with relative units (mass %) when predicting oil and protein, but better
results when working with absolute values when predicting starch.
Dowell et al. [55] also found that working with relative units (ppm
instead of ng) was the best when predicting DON or ergosterol in
wheat kernels. The impact on working with mass percentage (relative
units) or absolute content units at the end depends on the instrument,
application, and seeds characteristics (commodity and physicochem-
ical traits). But even if calibration precision could be improved by

Table 1 (continued )

Seed Attribute SEP R2 (%) Best use Technologya Citation

Pine seeds Moisture 1.9–2.7% 86 Usable GMR, GMT [82,83]

Sugar beet seed Moisture 0.27% 99 Quality control GMR [84]
Ratio: 1.4 81 Screening GMR [84]
True seed weight/total fruit weight

a Abbreviations: Diode array reflectance (DAR), Fourier-Transform reflectance and transmittance (FTR and FTT, respectively), Gratting Monochromator reflectance and
transmittance (GMR and GMT, respectively), chemical imaging reflectance and transmittance (CIR and CIT, respectively), prism gratting transmittance (PGT), Dual beam
transmittance (DBT).

b % of the individual fatty acid over total fatty acid content per kernel.
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working with absolute values, producers and breeders prefer percen-
tage mass units. The simultaneous prediction of seed mass and
compound in absolute units could be a good alternative to obtain
predictions expressed in % mass. However, the errors from both
calibrations and transformation to % would be added in the final
predictions and turn them in unacceptable.

5. NIR measuring modes and instrumentation

Although the way to assure the best calibrations is by assem-
bling a device optimized for single seed analysis, most of the
literature reporting successful single seed applications used com-
mercial instruments, initially designed for bulk grain samples or
other general purposes. Some commercial brands have designed
adapters for small samples in order to gain instrument versatility.
Those work well for single seeds. NIR technologies most utilized in
the literature include dispersive devices such as grating mono-
chromators (GM) and diode arrays (DA), Fourier Transform (FT),
and chemical imaging units (CI). Diode array instruments measure
the signal from all the wavelengths simultaneously and are usually
the cheapest and the most suitable for fast measurements in
rougher environments (i.e. on a field) because they do not contain
mechanical parts. Fourier Transform instruments, which measure
all the wavelengths at the same time as well but in frequency
domain, are mostly seen as laboratory instruments because its
higher complexity. FT advantages over diode arrays and mono-
chromators are well known (i.e. higher signal to noise ratio, higher
precisions, higher resolution etc.) but those do not generally lead
to significant overperformance when working in the NIR region,
especially when working with agriculture samples. Resolution, for
instance, does not need to be especially high as biochemical
complexity of agriculture samples translates in broad spectra with
no sharp peaks to be resolved [56]. Chemical imaging is a
relatively newer technology in NIR spectroscopy, which provides
an additional spatial dimension to the NIR multivariate data (also
known as data hypercubes). This allows both identifying and
mapping NIR biochemical information. The feature is useful when
seed characteristics or compounds under study are located in
specific regions of the seeds. For instance, when analyzing oil
content in corn kernels, only pixels belonging to the germ region
should be considered as most of the oil is located in that region
[16]. On the negative side, chemical imaging units are generally
slower, have lower signal to noise ratios (SNR), and have lower
penetration of the radiation in the sample. The data generated in a
single image is over 70,000 times larger than the data from a
conventional NIR instrument and need of additional pattern
recognition algorithms for selecting the pixels of interest, there-
fore chemical imaging units require higher computing power.

Both transmittance and reflectance measurements modes have
been employed in NIR single seed analyses, but there is no overall best
mode when analyzing seeds with homogeneous composition as
Dowell et al. [15] and Daun et al. [57] concluded in their study with
wheat kernels and canola seeds, respectively. However, when analyz-
ing heterogeneous kernels such as corn, transmittance measurements
may not be the best choice. Baye et al. [41] could not predict oil in corn
kernels with transmittance and Cogdill et al. [14] were not very
successful using imaging transmittance as the calibrations were close
to be valid for rough screening (RPD around 1.2). Orman et al. [13] also
got similar cross-validation results when working with a traditional
single point transmittance instrument (SECV¼1.2% R2¼75%).
Although it is logical that traditional reflectance instruments report
significantly better performance when the kernel germ faces the
detector, there are also slight differences in performance due to kernel
positioning in transmittance mode. However, the difference between
calibrations with germ facing the detector and facing the light source

has been reported to be of 0.2 percentage points and cannot be
considered significant [13].

When process automation, speed, and flexibility must be taken in
account, reflectance mode technologies will be always superior and
preferred. Therefore, any application for monitoring or on-line must
rely on reflectance diode-arrays. For in-lab applications where analysis
time is not a relevant constraint, the use of Fourier-transform or
gratting instruments, either reflectance or transmittance, can be
considered. Scanning the seeds on movement gives better results
than static measurements [23,58], most probably because during seed
movement scattering effects are minimized, reducing the variability
due to kernel shape and size. Janni et al. [23] observed significantly
better results with a patented measurement method [58] where the
kernel was tumbling by air flow while the measurement was taken. A
similar approach was proposed by Armstrong [59]. His USDA proprie-
tary instrument can scan up to 10 seeds per second if vacuum is
applied, while seeds are tumbling in an illuminated silica tube. The
whole seed is scanned in movement. That approach eliminates effects
from sample positioning while giving an homogeneous illumination of
the entire seed and providing a high quality signal. In a recent study
carried by Agelet et al. [44] the USDA instrument overperformed four
other instruments (Fourier transform transmittance, grating mono-
chromator reflectance, and diode array reflectance) when predicting
protein and oil in soybean seeds. Instruments collecting data on a
moving seed gave lower prediction errors than the instruments taking
static measurements, similar to what Janni et al. [23] reported.

Averaging several spectra from a single seed will increase the
signal to noise ratio (SNR). For static measurements, the spectra
averaging should not be done on spectra taken respotting the
kernels because changes in light scattering due to small changes in
position overcome the benefits of spectra averaging [13]. When
trying to speed up seed analysis, averaging spectra is not possible,
so the quality of the spectra and calibration accuracy will depend
on the initial SNR of the device.

6. Quantitative single kernel analysis

It is known that compositional difference within seeds exist
within the same plant and even within the same spikelet, in the
case of wheat. Wheat kernels located at the below the head of
spikelets have higher protein content on average than kernels
located on the top [60]. Environmental and field-related charac-
teristics bring compositional changes among samples of the same
variety [61,62]. As a result, the variability of major compounds in
seeds can be quite large within a batch of kernels harvested from a
same field. Quantification of those compounds in single seeds by
NIRS aims to a high speed segregation of seeds and grains to
narrow down their range and to increase batch uniformity.

Wheat and corn kernels are two of the commodities that have
been the most extensively studied at single level by NIRS. Their
world-wide significance in human and animal consumption
together with the impact of their physiochemical composition on
the quality of the end products, raised the interest in having these
commodities properly analyzed and sorted. The oldest studies
from the 90s focused on wheat kernels and were carried out by
The United States Department of Agriculture (USDA). Table 1
summarizes all single seed quantitative applications which were
developed scanning whole individual seeds and using single
kernel reference data: the range of standard error of prediction
and determination coefficients (minimum–maximum) when more
than one research or algorithm/preprocessing methods are avail-
able, and the best calibration use based on the highest reported
validation RPD from all studies applying the suggested thresholds
by Williams [7]. When RPD was not available and could not be
calculated from the published data, the highest determination
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coefficient achieved in validation was used to determine the
calibration use based on the correlation given by Kovalenko
et al. [43]. SEPs expressed as % come from calibrations developed
with % of the measured compound mass over seed mass (dry, as is,
or at fixed moisture rate), unless specified. The technology or
technologies that were utilized for each application are mentioned
using the abbreviations explained at the bottom of the table.

Comparing the results of several researches is complicated for
several reasons besides any difference due to the instrumentation.
Firstly, the samples used to develop the calibrations and to validate
them differ between researches. The NIR spectral variability
between seeds coming from different regions, crop-year, seasons,
and varieties can be large. If few samples and seeds were involved
in the calibration and validation process, the chances of having
isolated, not extrapolable results are high because the calibration
is not robust and representative of the prediction sample set. Most
probably, another research using the same number of seeds will
report significantly different errors of prediction and calibration
predictive performances. The minimum number of seeds and
varieties to be included in the calibration will depend on the
characteristics of the commodity, instrument, and use of the
calibration (i.e. quality control or screening, the extension and
location of the seeds to be analyzed in the future etc.).

Secondly, the reported statistics by several authors may not be
comparable with each other. When NIRS technologies were still under
development, some researchers would only report the correlation
coefficient between predicted and real values, which although provid-
ing an idea of calibration performance, it does not give information
about the expected error in future predictions. Comparing cross-
validation statistics with independent validation statistics, as already
mentioned, may also be misleading. On the other hand, a calibration
with lower prediction errors does not have to be always better. A
study which shows the lowest SEP does not mean it has the best
performance if the compound covered range by the calibration or
validation set is significantly shorter than the one covered by other
studies. Last but not least, there are other differences to be considered
when comparing calibration statistics such as prediction units, refer-
ence methods, calibration algorithms, or moisture basis among others.

Across all commodities moisture is not surprisingly the attribute
measured with most success (best calibration suitable for any purpose
and quality control). Protein and oil have been predicted with low
errors and allowed the best reported calibrations to be used for quality
control for some of the commodities. Corn, due to its heterogeneity, is
one of the commodities that report the lowest precision for those
compounds. Soybean seeds, on the other hand, report calibrations
with the best performance. Starch can only be screened. Starch is also
measured with higher errors in bulk samples, similar to what has been
seen in the Iowa State University Grain Quality Laboratory for corn
(data not shown). Seed mass is another attribute which have been
measured with relative success. Although most researchers reported
mass calibration performance for screening for most commodities
(RPD¼2.5), soybean seed dry mass can be predicted with high
accuracy (Table 1). It is expected that using dry mass as reference
values or mass at current moisture level lead to different results. Any
increase in moisture content in the seeds may lead to swelling, and
since mass measurement seems to be correlated to seed shape [44] a
negative impact and decrease in accuracy may be expected. While
protein and oil calibrations including high moisture samples have
been successful for bulk samples, the effect of moisture in predicting
attributes such as oil, protein, and mass in single seeds has not been
reported yet.

There are studies that have not reported successful results for
the same applications as in Table 1, most likely due to instru-
mental and sample limitations. For instance, Delwiche et al. [85]
worked in predicting protein in soybean seeds with a monochro-
mator transmittance device using absolute units. The obtained

calibration was unusable (RPD¼1.2, R2o0.50, RMSEP¼13.93 g/
kg). In that same work an attempt to predict inorganic phosphor-
ous was carried with no success as well in transmittance
(SEP¼568.6 mg/kg, RPD¼1.2), but worked better for reflectance
(SEP¼248 mg/kg, RPD¼2.8). Because NIRS does not quantify
inorganic compounds, it was probably indirectly measured
through other compounds. Hom et al. [38] attempted to measure
total aromatic compounds but had extremely low R2 (36%), and
SECV¼0.34 mmol/g of dry mass. On the other hand, some of the
reported studies may be overoptimistic due to the small data sets
analyzed and deficient validation process, or have some contro-
versy involved. The quantification of mycotoxins by NIRS is one of
the studies that has brought most attention and controversy at the
same time. Several studies have shown that mycotoxin contam-
ination does not occur evenly in all the kernels and location within
a batch, but rather a small fraction of highly contaminated kernels
[25,86–91]. That means that if there was a fast and non-
destructive method to detect and remove the highly contaminated
kernels entire batches of corn could be still recovered and used as
livestock feed. Some feasibility studies have shown promising
results, but it has not been proved that developing a stable model
involving several varieties, crops, and crop-years is possible. Even
if detection of indirect changes on corn kernels due to fungi and
mycotoxin can be done, the high variability from both corn kernels
and fungi strains put this application under a big question mark.

7. Qualitative and discriminative applications

Chemical imaging units are more utilized for qualitative studies
than for quantitative, probably because the mapping capabilities and
the advantage of analyzing several individual seeds at the same time
while targeting compounds that are not distributed homogeneously in
the seed (i.e. oil in corn kernels), diseases that happen in specific seed
areas (i.e. wheat black tip), and monitoring biological processes in the
seed. Most of the applications tested with NIR chemical imaging have
been also tested with single-point technologies with comparable
results. For instance, classification of vitreous or hard-soft kernels
has been done with traditional single point instruments, but the use of
chemical imaging allowed Manley et al. [12] to have a closer look to
the biochemical properties of the kernels and to find a third class of
endosperm in corn that had combined features of flourly and vitreous
endosperms together. Therefore, chemical imaging is shown to be a
powerful tool in qualitative applications and provides additional
understanding of biological processes of seeds. Some of the qualitative
or discriminative applications are the detection of aflatoxins [92], fungi
infection and damage [11,93–104], germination [105–109], discrimina-
tion of grain varieties, seed types, or impurities [110–115], insect
damage [105,116–119], color using short wavelengths [120,121], and
characterization of single grains and seeds [19,122–126]. Although
most of those applications are reported to be successful, Manley et al.
[127] advise that previous to develop any single seed application with
chemical imaging, the variation of the seed shape and texture has to
be evaluated versus the change of the chemical compound of interest,
as the major sources of variability in chemical imaging spectra come
from seed shape and texture.

Tables 2 and 3 summarize the main qualitative and discrimi-
native applications of NIR chemical imaging and ‘conventional’
single-point technologies on single seeds, respectively. Note that
there are over 4 times more discriminative applications with
chemical imaging than quantitative applications with chemical
imaging. If more than one class is discriminated in the study, the
overall sorting accuracy is the average of the partial sorting
accuracies. If there is more than one citation for an application,
or different algorithms/preprocessing methods have been tested
leading to more than one sorting accuracy, the range of achieved
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accuracies is displayed. When no specific accuracy was reported,
the research was mainly qualitative, or retrieving results was not
possible it is indicated with ‘n.a.’. Table 3 shows in the third
column all NIR single-point technologies that were used for each
application according to current literature, using abbreviations
explained at the bottom of the table.

Among the studies listed in both tables, the ones focused on
detecting and sorting by mold damage and insect infestation have the
most extensive related literature. Chemical imaging technologies
allowed early detection and tracking of fungi development on kernels
when wavelengths from the visible region were also used [11,93,95].
Discrimination of insect-damaged or infested kernels is another well-
studied application. Some insect-damaged kernels are easily removed
by cleaning, but insects growing inside the grain are invisible for
methods based on visual inspections [166]. Accuracies in segregating
kernels contaminated with insects depended of the size of the larvae.
Kernels with large larvae could be discriminated with accuracies up to
94%, small larvae lead to accuracies of only 63% [154]. When the larvae
is large enough, high discrimination accuracies were possible using a
short wavelength range [151]. The most relevant wavelengths in insect
infestation were the ones related to water (involved in the metabolic
processes of the insects), protein, lipids, phenolic compounds, and
carbohydrates because of the absorption of chitin from the insect
cuticle and a decrease of starch levels in the grain [151–153]. Other
type of damage such as heat or frost have also been analyzed with
NIRS. Wang et al. [138] analyzed several damage types in soybeans.
Heat damage results (accuracies over 95%) agreed with those from
Agelet et al. [135] for corn kernels. However, while soybeans damaged
by frost could be successfully discriminated with accuracies above 95%
when using non-linear classifiers such as Artificial Neural Networks
(ANN) [138], corn kernels damaged by frost could not be discriminated
by any of the tested algorithms [135]. Early frost damage in corn
mainly affects the germ and any changes caused by cold seem not
detectable by NIRS. The early detection of seed viability or plant
abnormality is not possible with conventional single-point technolo-
gies [135], which agrees with Wang et al. [138] with soybean seed
sprouting. For pine seeds, the results of Lestander [161] in sorting pine
seeds by their viability were high probably because they used

artificially killed seeds for the non-viable class, instead of seeds non-
viable due to aging such as Agelet et al. [135] Chemical imaging
technologies, on the other hand, have been more suitable to identify
early sprouting according to the available studies for wheat kernels
[105–108].

Discriminating varieties or wheat classes is an indirect way to
improve the quality of grain batches. The overall accuracies for
discriminating kernels from different wheat varieties can be very high
(Tables 2 and 3), especially when varieties with different colors are
scanned on the visible region together with the NIR region. When
analyzing all wheat classes, durum is the class that is classified from
the rest with the highest accuracy. Classes that have the same color (i.
e. Hard red spring vs. hard red winter) will often lead to higher
misclassified seeds compared to discriminative models involving
classes with different colors (red vs white), even if the visible region
is not involved in sorting because soft wheat varieties have a specific
texture which NIR can identify [62]. Spectral differences may arise in
NIR spectra between seeds which cannot easily be determined by
conventional reference analysis. For that reason, unsupervised sorting
based on specific variability sources of scanned grains, even if the
source of variability is unknown in advance, can improve the quality of
wheat batches and the resulting flour [167].

Sorting and discrimination can be also based on quantifiable
attributes such as protein, oil or moisture after setting sorting thresh-
olds according to quality targets and calibration error. Calibrations
which errors are large for accurate quantification but are acceptable
for screening, can still be utilized to discriminate kernels based on
‘high’ and ‘low’ amount of the measured compound. For breeders,
farmers, and industrial applications, segregating seeds according to
high-low content of a specific compounds allows shifting the overall
average of the batch. This is often good enough to improve plant
genetics or the quality of end-products. Current studies have also
shown a good repeatability of the low-high classification results. Using
the information of the visible wavelengths in addition of NIR,
Delwiche et al. [140] segregated wheat samples between high and
low protein with sorting accuracies ranging 78–98% – with lowest
accuracies coming from discriminating kernels within a same class.
Dowell et al. [65] sorted wheat kernels from four bins according to

Table 2
Major commodities and qualitative/discriminative applications developed with chemical imaging NIRS at single seed level: overall sorting accuracies (a range is reported if
different researches and methods are available, ‘n.a.’ indicates no specific data avilable) and main references.

Commodity Sorting application Overall Sorting accuracy (%) Mode Citation

Corn Different varieties 99 Reflectance [110]
Hardness n.a. Reflectance [12,122]
Aflatoxin n.a. Reflectance [92]
Fungal infection 94 Transmittance, Reflectance [93,94,95]

Soybeans Genetically modified soybeans 77–90 Reflectance [29]
Classes 87–100 Reflectance [111]
Mold infection 0–100 Reflectance [97]
Mold: Scab 83–95 Reflectance [11,96,98–102]
Black tip 95 Reflectance [103]
Ergot 99.9 Reflectance [104]
Sprouting 97–100 Reflectance [105–108]
Insect infestation 85–100 Transmittance, Reflectance [105–119]

Wheat Color and stain n.a. Reflectance [120,121]
Vitreousness 94–100 Reflectance [102,123,124]
Viability n.a. Reflectance [125]
Moisture behavior n.a. Reflectance [128,129]

Barley Sprouting 37–77 Reflectance [109]
Viability n.a. Reflectance [125]

Rice Classes &Varieties 80–100 Reflectance [112–114]

Sorgum Viability n.a. Reflectance [125]

Seed mixtures Oats vs groats 97–99 Reflectance [115]

Spinach Mold infected 26–88 Reflectance [126]
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hardness and protein content and were able to segregate 4 bins with
increasing protein fraction intervals of 1%. The average difference of
bins with high and low protein was 3.1% points. For hardness, the
average difference between bins was of 5.7 hardness units, and the
maximum difference between the lowest and highest hardness bins
was 19.9 h.u. Some authors have also worked with few wavelengths
for discriminating wheat kernels according to their protein content,
with just multiple linear regression (MLR) [168] or setting signal
threshold at specific wavelengths [148]. However, using few wave-
lengths when discriminating multiple classes of wheat (hard red,
durum etc.) is not accurate enough [140]. Pasikatan and Dowell [168]
using wavelengths 920 and 1660 nm discriminated high protein
(412.5% at 12% moisture weight basis) and low protein (o11.5%,
12% m.b.) wheat kernels. With a maximum of two consecutive sorting
processes, initial blends of 95:5 could lead to a final protein concen-
tration of the batch equal to the dominant protein class. Pearson et al.
[148] developed a LED sorting system working with just few wave-
lengths from the NIR region (840, 940, 1070 nm) and Vis region (470,
527, and 624 nm). The system achieved sorting speeds of 20 kernels/s
at low cost (roughly 1000 dollars). In that case, the instrument was
just calibrated to identify kernels with potentially high protein and to
identify potentially contaminated kernels with Fusarium head blight.
The final sorted sample, 40% of the initial unsorted batch, achieved a
protein average of one percent point higher than when unsorted.

8. Conclusions

Near infrared technologies have been utilized for in single seed
analysis, mostly targeting corn, wheat, and soybeans. Quantitative

analysis of major organic compounds such as moisture, oil, and
protein lead to most calibrations usable for any purpose. The
predictive ability of the calibration is mainly given by the com-
modity (kernel size and heterogeneity) and the instrumentation
characteristics. Although no measurement mode (reflectance,
transmittance) have lead to the best reported calibrations, when
dealing with heterogeneous seeds reflectance is the best working
mode. On the other hand, scanning seeds while tumbling or
spinning aid in developing calibration with higher precisions and
overcome any other difference between instruments (measure-
ment mode, average of scans, technology etc.). Preprocessing
methods such as SNV, MSC, detrending and derivatives work well
when developing calibrations using relative units such as percen-
tage. However, when predicting seed mass no preprocessing
works better than plain apparent absorbance. Good results have
been also achieved when working with absolute units for com-
pounds such as protein or oil, but the use of either relative or
absolute units will be given by the instrument and characteristics
of the samples and compound to be measured. Calibration models
suitable for screening may still be used for discrimination of seeds
with low and high compound concentrations. Those models can
successfully disaggregate wheat mixtures, increasing the overall
homogeneity of the seed batch.

The future of NIR single kernel sorters will be driven by the
needs of specific applications. Optimization and customization of
optical components and sampling systems are required to ensure
the success of an application on a specific commodity. On the
other hand, while high sorting speeds may be desirable, accuracy
and precision are often sacrificed when speeding up the analyses.
Similar to what happens already with NIT bulk analyzers, most

Table 3
Major commodities and qualitative/discriminative applications developed with single-point NIRS at single seed level: overall sorting accuracies (range is reported if different
researches and methods are available, ‘n.a.’ indicates no specific data avilable), NIR technologies used, and main references.

Commodity Sorting application Overall Sorting accuracy (%) Technologya Citation

Corn Haploid vs hybrids 92 GMT [130]
Fumonisin 80–90 DAR, DAT [15,25,131,132]
Aflatoxin 25–99 DAR, DAT [25,131,132]
Fungal infection 85–100 GMR, DAR [133,134]
Frost damage 60–68 DAR [135]
Heat damage 88–99 DAR [135]
Viability 38–51 DAR [135]

Soybeans Viability (1) and vigor (2) (1) 48.5–62, (2) n.a. DAR (1) [135], (2) [136]
Aging 60–100 DAR [137]
Genetically modified soybeans 72–98 DAR, GMR [28–30]
Fungal contamination 83–100 DAR [138,139]
Frost damage 72–97 DAR [138]
Heat damage 84–97 DAR [138]
Sprout 54–64 DAR [138]
Weather 61–98 DAR [138]

Wheat Class separation 65–100 DAR, GMR, PGT [140,141]
Hardness n.a. DAR [142]
Vitreousness 72–100 DAR [26,27,143]
Mold: Scab 77–97 DAR [144–149]
Mold damage 95–98 DAR [145]
Color 99–100 DAR [63,150]
Insect infestation 62–99 DAR, GMR [63,151–154]
Waxy kernels 47–95 DAR,GMR [70,155,156]
Heat damage 91–100 DAR [157]

Rice Pecky rice 99–100 DAR [158]

Pine and tree seeds Empty seeds 92–100 GMT, GMR [159,160]
Viable 90–100 GMT [160,161]
Vigour 75–100 GMT [162]
Parents and Origins 91–96 GMR [163]
Insect damage-infested 90–100 GMR [160,164]

Seed mixtures Weed, wheat, sunflowers, stubble n.a. GMR [165]

a Abbreviations: Diode array reflectance (DAR), Fourier-Transform reflectance and transmittance (FTR and FTT, respectively), Gratting Monochromator reflectance and
transmittance (GMR and GMT, respectively), prism gratting transmittance (PGT), Dual beam transmittance (DBT).
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probably NIR single kernels analyzers will continue being built
based on potential end users: Breeders and laboratory devices
(lower speed, higher accuracies, more human interaction required)
and farmers, traders, and food industries (high speed, high
robustness, high degree of automation, lower accuracy).
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